www.sakshieducation.com

Methods (Member Functions) in classes

Member functions or methods are used to work on the data members of the class. The methods
can be defined inside or outside of the class. If the methods are defined inside the class definition
then it can be defined directly, but if defined outside the class then we have to use scope

resolution operator “::” along with class name and function name.

If we define the function inside the class then no need declare it first, we can directly define the

function inside the class as shown in below.

class Account

1
string str;
public:
vold print_inside() //Inside fhe class defination
1
str = "Hello! - In";
cout << "Inside class: ™ << 5tr << endl;
b
b

If we define the function outside the class definition then must declare the function inside the

class definition and then define the function outside the class as shown in below.

class Account

{
string str;
public:
void printioutside(}; // function declration for cutside class function defination
I
void Account::print outside () //Outside the class defination
{
str = "Hella!!! - OQutside";
cout << "Outside class: "<< str << endl;
b

The following examples illustrates the defining the member function inside the class and outside

the class.

www.sakshieducation.com

www.sakshieducation.com

riny [

A Account =| ¥ print_outside()
-#include ¢iostream:
#include <string
using namespace std;

-class Account
{
string str;
public:
void print_outside(); // function declration for outside class function defination
5 void print_inside() //Inside the class defination 3
{ 1" GACPP¥first program\Debuglfirst program.exe = | Bl i

str = Hello! - In’; E Inside class: Hello! - In
cout << "Inside class: " <¢ str <¢ endl; Outside class: Hellott! - Qutside

}
b

- void Account::print outside ()
{

str = "Hellol!! - Qutside";

cout <¢ "Outside class: "¢< str <¢ endl;

!

////0utside thetlass defination

- int main()
{
Account obi;
obj.print_inside();
obj.print_outside();
cin.get();
return @;

!

Example:

#include <iostream>
using namespace std;
class Account {

private: // private access specifier
int acc_no;
float balance;

public: // public access specifier
void acc_details()// function definition inside the class
{
cout << "enter your account number:";
cin >> acc_no;
cout << "enter your balence:";

www.sakshieducation.com

www.sakshieducation.com

cin >> balance;
cout << "Balance:

}

<< balance << endl;

float deposit();//function declaration for outside class functions definition
float withdraw();//function declaration for outside class functions definition

}s
float Account::deposit()// function definition outside the class
{
float amount;
cout << "Enter the deposit amount:";
cin >> amount;
balance = balance + amount;
return balance;
}
float Account::withdraw() // function definition outside the class
{
float amount;
cout << "Enter withdraw amount:";
cin >> amount;
balance = balance - amount;
return balance;
}

int main()

{

Account obji;
objl.acc_details();

cout << "Balace after depositing:
cout << "Balance after withdrawing:

"

<< objl.deposit() << endl;
" << objl.withdraw() << endl;

system("pause");
return 0;

www.sakshieducation.com

www.sakshieducation.com

enter your account number:21171
enter your halence:20800
Balance:200008

Enter the deposit amount :5HHH
Balace after depositing:250008
Enter withdraw amount:Z2HPH

Balance after withdrawing:23HHH
Press any key to continue . . .

Figurel: Output of the program

Types of member functions

1. Simple member functions
2. Inline member functions
3. Friend member function
4. Static member functions

5. Const member functions

Simple member functions

These are the simple basic member functions which are not required any special keyword

to indicate as prefix. The syntax for simple member functions given below,

Return_type Function_Name(argument list)

{

statements;

www.sakshieducation.com

www.sakshieducation.com

Inline member functions

The Inline functions are enhancement feature provide in C++ programming language to
increase the execution time of a program. Inline functions are similar to macros. The
preprocessors are not used in C++ because it has some drawbacks. Inline functions are actual
functions, which are copy the code every where the function is defined during the compilation
time. All the member functions defined inside the class definition are by default inline functions,
but whereas outside the class, the function are inline by using ‘inline’ keyword with the function
name. If any change to an inline function then the program must be recompiled because the
compiler needs to replace all the code at each place otherwise it will continue with old

functionality.

Syntax:

inline void function_name()

{

return O;

Important points about inline functions:

¢ Inline functions increase the speed of the program by avoiding function calling overheads.

Inline functions must be small to have better efficiency otherwise it increases the size of

the code which affects the speed also.

The large functions must be defined outside the class definition using scope resolution *::’
operator, because if we define such function inside the class then they become inline

function automatically which affects the performance.

The compiler is unable to perform inlining if the function is too complicated, so must

avoid big looping conditions inside the inline functions.

Inline functions are kept in the symbol table by the compiler and all the calls for such

function taken care at the compile time.

www.sakshieducation.com

www.sakshieducation.com

Example for inline functions inside the class:

#include <iostream>

using namespace std;

class A
{
private:
int x;
public:
void get_value() // default inline function in C++
{
cout << "Enter a Value:";
cin >> x;
}

void print_value() // default inline function in C++

{
cout << Xx << endl;

}

3

int main()

{
A obj;
obj.get_value();
obj.print_value();
system("pause");
return 0;

}

Enter a Ualue:-18A
10A

Press any key to continue . . .

Figure2: Output of the program

In the above program ‘get_value()’ and “print_value()’ are by default inline function inside class
definition and they are defined to access the private data members of the class. If we want to use
inline functions outside the class then must be use the “inline’ keyword before the function name

as shown below.

Example for inline functions outside the class:

www.sakshieducation.com

www.sakshieducation.com

#include <iostream>
using namespace std;

class A

{

private:
int x;

public:
void get_value();
void print_value();

}s
inline void A :: get_value() // inline function outside the class
{
cout << "Enter a Value:";
cin >>x;
}
inline void A :: print_value() // inline function outside the class
{
cout << x << endl;
}
int main()
{
A obj;
obj.get_value();
obj.print_value();
system("pause");
return 0;
}

a Value:1234

Press any key to continue . . .

Figure3: Output of the program

Friend member function

A non member function cannot access an objects private and protected members and

sometimes it force programmers to write long and complex codes. This can be overcome by

www.sakshieducation.com

www.sakshieducation.com

using friend function and friend class. The friend member functions are not class member
functions but they are made to give private access to non class functions. These are the functions
that can be made friendly with both the classes, so that these functions can have access to the

private members of these classes.

If a function is defines as a friend function then the private and protected members of class
can be accessed from that function. The declaration of friend function should be done inside the
body of class either in private section or in public section starting with keyword friend. The

compiler knows the given function is a friend function by its keyword “friend’.

Syntax:
class ClassName

{
private:
data members;
public:
friend return_type FunctionName(arguments);

¥

Example program working with friend function:

#include <iostream>
using namespace std;

class classl

{
private:
int a;
public:
void get_value()
{
cout << "Enter A value:" ;
cin >> a;
}
friend void print_value(classl); // friend function declaration
¥
void print_value(classl objl) // friend function defination
{
cout << "a=" << objl.a << endl;
}

www.sakshieducation.com

www.sakshieducation.com

int main()

{
classl obji;
objl.get_value();
print_value(objl);
system("pause");
return 0;

Enter A value:777
a=777

Press any key to continue . . .

Figure4: Output of the program

In the above example we are getting some value from user using normal member function and

displaying this value on the screen using friend function.

Example program working on objects of two different classes using friend function:

In the below example the friend function for addition is declared in both the classes and getting
values for ‘a’ form classl and for ‘b’ class2 respectively, addition is performed on these humbers

in the friend function definition:

#include <iostream>
using namespace std;
class classi; //. forward declaration

class class2

{
private:
int b;
public:
void get_value(int y)
{
b=y;
}

void print_value()

{

cout << "b=" << b << endl;

www.sakshieducation.com

www.sakshieducation.com

}

friend void Addition(classl, class2); // friend function declaration

s
class classi
{
private:
int a;
public:
void get_value(int x)
{
a = Xx;
}
void print_value()
{
cout << "a=" << a << endl;
}
friend void Addition(classl, class2); // friend function declarartion
s

void Addition(classl objl, class2 obj2) // friend function defination
{

}

cout << "Addition is:" << objl.a + obj2.b << endl;

int main()

{
classl obji;
class2 obj2;
objl.get_value(190);
objl.print_value();
obj2.get_value(20);
obj2.print_value();
Addition(obj1,0bj2);
system("pause");
return 0;

Addition iz:3@
ress any key to continue . . .

Figure5: Output of the program

www.sakshieducation.com

www.sakshieducation.com

Friend class

A class can be friend of another class using “friend’ keyword as similar to friend function.
When a class is made a friend class then all the member functions of that class becomes friend

functions.

classl

{
public:
functions();
friend class2; // class2 is friend class
3
class2

{
public:
functions();

In the above example the member functions of class2 will be friend functions of classl so that
any member functions of class2 canaccess the private data of class1.

Static member functions

A function can be static member function by using ‘static’ keyword with function name.
These functions work for the class as whole rather than for a particular object of a class. It can be
called using the object and direct member access operator “.” (Dot), but more typically the static
member- function can be accessed itself using class name and scope resolution “::” operator.
These functions cannot access ordinary data members and member functions, but only static data

members and static member functions.

e \We cannot have the static member function and non static member function with same

name and type arguments.

www.sakshieducation.com

www.sakshieducation.com

e A static member function cannot be declared with const and volatile type qualifiers.
e A static member function cannot declare as a virtual function.

e A static member function cannot have this pointer.

Syntax:

static Return_data_type Function_Name()

statements;

}
Example:

#include <iostream>
using namespace std;

class rectangle

{
private:
int Length, Width;
static int count; // static member declaration
public:
void get_value(int, int);
void print_values();
void area();
static int get count() // static member function defination
{
return count;
}
s
void rectangle :: get_value(int 1, int w)
{
Length = 1;
Width = w;
count ++;
}
void rectangle :: print_values()
{

cout << "Length is:" << Length << endl;

www.sakshieducation.com

www.sakshieducation.com

cout << "Width is:" << Width << endl;

}
void rectangle :: area()
{
cout << "The Area is:" << Length * Width << endl;
}

int rectangle::count = @; // static member initialization

int main()
{

rectangle obj,obj2;

cout << "count=" << rectangle::get_count() << endl; // calling static member
function

obj.get_value(7,7);

obj.print_values();

obj.area();

cout << "count=" << rectangle::get_count() << endl; // calling static member
function

obj.get_value(9,9);

obj.print_values();

obj.area();

cout << "count=" << rectangle::get_count() << /endl; // calling static member
function

system("pause");

return 0;

count =0
Length is:7
Width is:?

The Area is:49
count=1

Length is:?
Width is:9

The Area is:81
count=2
Press any key to continue . . .

Figure6: Output of the program

Const member functions

Const keyword makes the variable constant, which means if the variable once defined then

there values will be constant and cannot be changed throughout the program. A function

www.sakshieducation.com

www.sakshieducation.com

becomes const when the const keyword is used with function declaration. Const keyword with
member functions can never modify the object or its related data members. It is useful to make as
many functions const as possible so that accidental changes to objects are avoided. When a
function is declared as const, then it can be called by any type of object but where as non const

functions can only be called by non const objects.

Syntax:

Return_type Function_Name const ()

{

statements;

Example:

#include <iostream>
using namespace std;

class rectangle

{
private:
int Length, Width;
public:
void get_value(int, int);
void print_values();
void area() constj;. // Const member function declaration
¥
void rectangle :: get_value(int 1, int w)
{
Length = 1;
Width = w;
¥
void rectangle :: print_values()
{
cout << "Length is:" << Length << endl;
//cout << "Length is:" << Length << endl;
cout << "Width is:" << Width << endl;
}

www.sakshieducation.com

www.sakshieducation.com

void rectangle :: area() const // const member function defination

{

F

cout << "The Area is:" << Length * Width << endl;

}

int main()

{
rectangle obj;
obj.get_value(7,7);
obj.print_values();
obj.area();
system("pause");
return 0;

Preszz any key to continue . . .

Figure7: Output of the program

www.sakshieducation.com

